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Abstract

A problem of the magnetic fields description for high energy physics experiments is consid-
ered. As an example we present a three-dimensional B-spline approximation of the magnetic
field in the working region of the CBM dipole magnet. Such an approximation allows one
both to calculate accurately the values of the magnetic field in each point of the working
region and to determine the derivatives of the magnetic field components up to the third
order. This provides a possibility to use high-accuracy numerical methods for approximation
of a charged particle trajectory in the inhomogeneous magnetic field.

In this paper we consider a numerical problem of the three-dimensional (3D) magnetic field
approximation. This is a typical problem not only for the CBM experiment [2], but for many
experiments in high energy physics where one deals with a track fitting task. It arises in solving
the motion equations of charged particles in the magnetic field. In practice, we deal with a non-
homogeneous field known from field measurements or from mathematical calculations on some
set of points. The problem of continuation of the field is usually solved by applying the piece-wise
linear node functions. However, such field approximations provide neither only the existence of
high-order derivatives of the field nor even the existence of first derivatives. The presence of
high-order derivatives is very important when we apply high-accuracy numerical methods for
solving the motion equation. These methods provide a good convergence of numerical solutions
to continuous ones only in the case of existence of corresponding derivatives of the field. The
best approach for continuation of the differentiable field is the spline approximation method. In
this paper we discuss the application of B-spline methods [1] for description of magnetic fields
in the CBM experiment.

Let us consider a general problem of three-dimensional B-spline approximation of a function
f(u, v, t) in rectangular region Ω = [U1, U2]× [V1, V2]× [T1, T2]. Let {uk, k = 1,K}, {vl, l = 1, L},
{tm,m = 1,M} be sets of nodes for variables u, v, t. We suppose that

uk < uk+1, vl < vl+1, tm < tm+1;

and
u1 = U1, uK = U2, v1 = V1, vL = V2, t1 = T1, tM = T2.

Let {fk,l,m} be
fk,l,m = f(uk, vl, tm), k = 1,K, l = 1, L,m = 1,M.

The B-spline approximation procedure includes three steps. At first, we define L × M
B-spline approximation functions f̂(u, vl0 , tm0) for all {l0,m0, l0 = 1, L,m0 = 1,M} on the base
{fk,l0,m0, k = 1,K}. We use B-spline node functions of the third order. We also add two
additional nodes u0, uK+1 and two additional equations for the boundary derivative values to
exclude the indefinition in the B-spline constructing. Then on the interval [U1, U2] the function
f̂(u, vl0 , tm0) may be expressed

f̂(u, vl0 , tm0) =
K+1∑

k=0

ak,l0,m0fk(u), (1)

where fk(u) is the node function associated with the node xk. It should be noted that the
function f̂(u, vl0 , tm0) has a third derivative and a continuous second derivative as a function of
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u. After this we repeat the procedure for variable v. For all {k0,m0, k0 = 0,K + 1,m0 = 1,M}
on the base {ak0,l,m0, l = 1, L} we get a set of coefficients {bk0,l,m0}. For all {m0 = 1,M} in
rectangular region [U1, U2] × [V1, V2] the function f̂(u, v, tm0) may be expressed

f̂(u, v, tm0) =
K+1∑

k=0

L+1∑

l=0

bk,l,m0fk(u)gl(v), (2)

where gl(u) is the node function associated with the node vl.
The last step for variable t will give us a set of coefficients {ck,l,m, k = 0,K + 1, l =

0, L + 1,m = 0,M + 1}. As a result, we have the following approximation f̂(u, v, t) of the
function f(u, v, t)

f̂(u, v, t) =
K+1∑

k=0

L+1∑

l=0

M+1∑

m=0

ck,l,mfk(u)gl(v)hm(t), (3)

where hm(t) is the node function associated with the node tm. By differentiating this equality,
one can get the approximation of the derivatives of the function f(u, v, t) up to the third order
as a function of u, v, t.

It is very difficult to construct for some magnets the differentiable field approximations using
only Cartesian coordinates. One can see 3D models of inclined magnets on Figs. 1-3. These
magnets are considered as possible variants of the dipole magnet for the CBM experiment. The
inclined poles version is also very popular for separator magnets. That is why we adopt the
approach considered above for this case.

It is impossible to apply directly the above scheme for such type magnets. In this connection,
we use special variables for the field description. Let O be the place of a target, see Fig. 4. Let
the axes Oz , Oy be the direction of the beam and the ray perpendicular to the median plain
of the dipole magnet. We define the axis Ox as a perpendicular line to the axes Oz and Oy.
Let Ψ be the angle between the plain passing through the point a = (xa, ya, za), the axis Ox
from one side and the median plane Oxz on the other side. We have

ya = tan(Ψ)za. (4)

Let Ψmax be the acceptance of the magnet in the plain Oyz, ±Xmax and ±Zmax be the maximum
deviations for coordinates xa, ya, correspondingly. Then, we can use new variables {Ψ,X,Z}
which belong to the rectangular region

Ω = [−Ψmax,Ψmax] × [−Xmax,Xmax] × [−Zmax, Zmax]

for field components {Bi} description:

Bi(Ψ, x, z) =
K+1∑

k=0

L+1∑

l=0

M+1∑

m=0

ci
k,l,mfk(Ψ)gl(x)hm(z). (5)

We have the inclination of the magnet working region in the plane Oyz only here, but one
can see the magnet with the inclination in two planes Oyz and Oxz in Fig. 5. Let Φ be the
angle between the plain passing through the point a = (xa, ya, za), the axis Oy and the plane
Oyz, see Fig. 6. We have

xa = tan(Φ)za. (6)
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Fig. 1: 3D model of the HERA dipole magnet Fig. 2: 3D model of the HERMES dipole magnet

Fig. 3: Half of the HERMES dipole magnet Fig. 4:

Fig. 5: 3D model of the inclined version of the CBM dipole
magnet

Fig. 6:
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Let Ψmax be the acceptance of the magnet in the plane Oyz, Φmax be the acceptance of the
magnet in the plane Oxz, and ±Zmax be the maximum deviations for coordinate za. Then we
can use new variables {Ψ,Φ, z} belonging to the rectangular region

Ω = [−Ψmax,Ψmax] × [−Φmax,Φmax] × [−Zmax, Zmax]

for field description in this case

Bi(Ψ,Φ, z) =
K+1∑

k=0

L+1∑

l=0

M+1∑

m=0

ci
k,l,mfk(Ψ)gl(Φ)hm(z). (7)

By differentiating this equality, we get the approximation for derivatives of the field compo-
nents Bi up to the third order depending on {Ψ,Φ, Z}.

In practice, we need the derivative not as a function of {Ψ,Φ, z}, but depending on x, y, z.
To calculate the derivatives of the function Bi depending on x, y, z, we can use the following
equalities

dBi(Ψ,Φ, z)
dx

=
dBi(Ψ,Φ, z)

dΨ
dΨ
dx

+
dBi(Ψ,Φ, z)

dΦ
dΦ
dx

, (8)

dBi(Ψ,Φ, z)
dy

=
dBi(Ψ,Φ, z)

dΨ
dΨ
dy

+
dBi(Ψ,Φ, z)

dΦ
dΦ
dy

, (9)

dBi(Ψ,Φ, z)
dz

=
dBi(Ψ,Φ, z)

dΨ
dΨ
dz

+
dBi(Ψ,Φ, z)

dΦ
dΦ
dz

+
dBi(Ψ,Φ, z)

dz
. (10)

We have from (4) and (6)
Ψ = arctan(

y

z
), Φ = arctan(

x

z
). (11)

It follows from here

dΨ
dx

= 0,
dΨ
dy

=
z

y2 + z2
,

dΨ
dz

= − y

y2 + z2
, (12)

dΦ
dx

=
z

x2 + z2
,

dΦ
dy

= 0,
dΦ
dz

= − x

x2 + z2
. (13)

The mixed partial derivatives of a higher order could be calculated similarly.
These procedures were used to construct a differentiable 3D B-spline approximation of the

magnetic field for different types of dipole magnets for the CBM experiment.
The proposed method of the magnetic field approximation may be used for the description

of wide class experiments. The 3D B-spline approximation has an advantage in comparison
with the 3D cubic-spline approximation, because it permits one to decrease significantly the
requirements to the computer memory for the same accuracy level.
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